
MERO: A Statistical Approach for Hardware
Trojan Detection

Rajat Subhra Chakraborty, Francis Wolff, Somnath Paul,
Christos Papachristou and Swarup Bhunia

Department of Electrical Engineering and Computer Science,
Case Western Reserve University, Cleveland OH–44106, USA

Contact E-mail: rsc22@case.edu

Abstract. In order to ensure trusted in–field operation of integrated
circuits, it is important to develop efficient low–cost techniques to detect
malicious tampering (also referred to as Hardware Trojan) that causes
undesired change in functional behavior. Conventional post–manufacturing
testing, test generation algorithms and test coverage metrics cannot be
readily extended to hardware Trojan detection. In this paper, we propose
a test pattern generation technique based on multiple excitation of rare
logic conditions at internal nodes. Such a statistical approach maximizes
the probability of inserted Trojans getting triggered and detected by
logic testing, while drastically reducing the number of vectors compared
to a weighted random pattern based test generation. Moreover, the pro-
posed test generation approach can be effective towards increasing the
sensitivity of Trojan detection in existing side–channel approaches that
monitor the impact of a Trojan circuit on power or current signature.
Simulation results for a set of ISCAS benchmarks show that the pro-
posed test generation approach can achieve comparable or better Trojan
detection coverage with about 85% reduction in test length on average
over random patterns.

1 Introduction

The issue of Trust is an emerging problem in semiconductor integrated cir-
cuit (IC) security [1–3, 8]. This issue has become prominent recently due to
widespread outsourcing of the IC manufacturing processes to untrusted foundries
in order to reduce cost. An adversary can potentially tamper a design in these
fabrication facilities by the insertion of malicious circuitry. On the other hand,
third-party CAD tools as well as hardware intellectual property (IP) modules
used in a design house also pose security threat in terms of incorporating mali-
cious circuit into a design [3]. Such a malicious circuit, referred to as a Hardware
Trojan, can trigger and affect normal circuit operation, potentially with catas-
trophic consequences in critical applications in the domains of communications,
space, military and nuclear facilities.

The work is funded in part by a DoD seedling grant FA-8650-08-1-7859.



(a) Generic comb. Trojan (b) Generic sequential Trojan

(c) Comb. Trojan example (d) Sequential Trojan example

Fig. 1. Generic model for combinational and sequential Trojan circuits and correspond-
ing examples.

An intelligent adversary will try to hide such tampering of IC’s functional
behavior in a way that makes it extremely difficult to detect with conventional
post–manufacturing test [3]. Intuitively, it means that the adversary would en-
sure that such a tampering is manifested or triggered under very rare conditions
at the internal nodes, which are unlikely to arise during test but can occur dur-
ing long hours of field operation [13]. Fig. 1 shows general models and examples
of hardware Trojans. The combinational Trojans as shown in Fig. 1(a) do not
contain any sequential elements and depend only on the simultaneous occurrence
of a set of rare node conditions (e.g. on nodes T1 through node Tn) to trigger a
malfunction. An example of a combinational Trojan is shown in Fig. 1(c) where
the node S has been modified to S?, and malfunction is triggered whenever the
condition a = 0, b = 1, c = 1 is satisfied. The sequential Trojans shown in Fig.
1(b), on the other hand, undergo a sequence of state transitions (S1 through Sn)
before triggering a malfunction. An example is shown in Fig. 1(d), where the
3–bit counter causes a malfunction at the node S on reaching a particular count,
and the count is increased only when the condition a = 1, b = 0 is satisfied at
the positive clock–edge. We refer to the condition of Trojan activation as the
triggering condition and the node affected by the Trojan as its payload.

In order to detect the existence of a Trojan using logic testing, it is not only
important to trigger a rare event at a set of internal nodes, but also to propagate
the effect of such an event at the payload to an output node and observe it. Hence,
it is very challenging to solve the problem of Trojan detection using conventional
test generation and application, which are designed to detect manufacturing de-
fects. In addition, the number of possible Trojan instances has a combinatorial
dependence on the number of circuit nodes. As an example, even with the as-
sumption of maximum 4 trigger nodes and a single payload, a relatively small



ISCAS–85 circuit such as c880 with 451 gates can have ∼109 triggers and ∼1011

distinct Trojan instances, respectively. Thus, it is not practical to enumerate all
possible Trojan instances to generate test patterns or compute test coverage.
This indicates that instead of an exact approach, a statistical approach for test
vector generation for Trojans can be computationally more tractable.

In this paper, we propose a methodology, referred to as MERO (Multiple
Excitation of Rare Occurence) for statistical test generation and coverage deter-
mination of hardware Trojans. The main objective of the proposed methodology
is to derive a set of test patterns that is compact (minimizing test time and
cost), while maximizing the Trojan detection coverage. The basic concept is to
detect low probability conditions at the internal nodes, select candidate Trojans
triggerable by a subset of these rare conditions, and then derive an optimal set
of vectors than can trigger each of the selected low probability nodes individually
to their rare logic values multiple times (e.g. at least N times, where N is a given
parameter). As analyzed in Section 3.1, this increases the probability of detec-
tion of a Trojan having a subset of these nodes as its trigger nodes. By increasing
the toggling of nodes that are random–pattern resistant, it improves the proba-
bility of activating a Trojan compared to purely random patterns. The proposed
methodology is conceptually similar to N-detect test [5,6] used in stuck-at ATPG
(automatic test pattern generation), where test set is generated to detect each
single stuck-at fault in a circuit by at least N different patterns, in the process
improving test quality and defect coverage [6]. In this paper, we focus on digital
Trojans [13], which can be inserted into a design either in a design house (e.g.
by untrusted CAD tool or IP) or in a foundry. We do not consider the Trojans
where the triggering mechanism or effect are analog (e.g. thermal).

Since the proposed detection is based on functional validation using logic
values, it is robust with respect to parameter variations and can reliably detect
very small Trojans, e.g. the ones with few logic gates. Thus, the technique can be
used as complementary to the side–channel Trojan detection approaches [1,9–11]
which are more effective in detecting large Trojans (e.g. ones with area > 0.1%
of the total circuit area). Besides, the MERO approach can be used to increase
the detection sensitivity of many side-channel Trojan detection techniques such
as the ones that monitor the power/current signature, by increasing the activity
in a Trojan circuit. Using an integrated Trojan coverage simulation and test
generation flow, we validate the approach for a set of ISCAS combinational and
sequential benchmarks. Simulation results show that the proposed test genera-
tion approach can be extremely effective for detecting arbitrary Trojan instances
of small size, both combinational and sequential.

The rest of the paper is organized as follows. Section 2 describes previous
work on Trojan detection. Section 3 describes the mathematical justification
of the MERO methodology, the steps of the MERO test generation algorithm
and the Trojan detection coverage estimation. Section 4 describes the simulation
setup and presents results for a set of ISCAS benchmark circuits with detailed
analysis. Section 5 concludes the paper.



2 Trojan Detection: Previous Work

Previously proposed Trojan detection approaches can be classified under two
main classes: (1) destructive approaches and (2) non–destructive approaches.
In the destructive approaches, the manufactured IC is de–metallized layer by
layer, and chip microphotographs of the layers are integrated and analyzed by
advanced software to detect any tampering [4]. However, the applicability of
such approaches is limited by the fact that the hacker is most likely to modify
only a small random sample of chips in the production line. This means that the
success of detecting the Trojan depends totally on correctly selecting a manufac-
tured IC instance that has actually been tampered. Also, destructive methods
of validating an IC are extremely expensive with respect to time and cost and
technology intensive, with validation of a single IC taking months [3]. Hence, it is
important to investigate efficient non–destructive Trojan detection approaches.

Two non-destructive Trojan detection techniques can be categorized into
two broad classes: (1) Side-channel Analysis based and (2) Logic Testing based
techniques. The side–channel analysis based techniques utilize the effect of an
inserted Trojan on a measurable physical quantity, e.g. the supply current [1,11]
or path delays [10]. Such a measured circuit parameter can be referred as a
fingerprint for the IC [1]. Side–channel approaches of detecting Trojans belong to
a class of generic powerful techniques for IC authentication, and are conceptually
applicable to Trojans of all operational modes and to designs of arbitrary size and
complexity. Only local activation of the Trojans is sufficient to detect them, and
methods have been proposed to maximize the possibility of locally activating
Trojans [9]. However, there are two main issues with the side–channel based
approaches that limit their practical applicability:

1. An intelligent adversary can craft a very small Trojan circuit with just a few
logic gates which causes minimal impact on circuit power or delay. Thus it
can easily evade side–channel detection techniques such as the ones described
in [1,10].

2. The fingerprint is extremely vulnerable to process variations (i.e. process
noise) and measurement noise. Even advanced de–noising techniques such
as those applied in [1] fail to detect arbitrarily small Trojans under process
variations.

Logic testing based approaches, on the other hand, are extremely reliable
under process variations and measurement noise effects. An important challenge
in these approaches is the inordinately large number of possible Trojans an ad-
versary can exploit. Relatively few works have addressed the problem of Trojan
detection using logic testing. In [12], a design methodology was proposed where
special circuitry was embedded in an IC to improve the controllability and ob-
servability of internal nodes, thereby facilitating the detection of inserted Trojans
by logic testing. However, this technique does not solve the problem of detecting
Trojans in ICs which have not been designed following that particular design
methodology.



3 Statistical Approach for Trojan Detection

As described in Section 1, the main concept of our test generation approach
is based on generating test vectors that can excite candidate trigger nodes in-
dividually to their rare logic values multiple (at least N) times. In effect, the
probability of activation of a Trojan by the simultaneous occurrence of the rare
conditions at its trigger nodes increases. As an example, consider the Trojan
shown in Fig. 1(c). Assume that the conditions a = 0, b = 1 and c = 1 are very
rare. Hence, if we can generate a set of test vectors that induce these rare con-
ditions at these nodes individually N times where N is sufficiently large, then a
Trojan with triggering condition composed jointly of these nodes is highly likely
to be activated by the application of this test set. The concept can be extended
to sequential Trojans, as shown in Fig. 1(d), where the inserted 3–bit counter
is clocked on the simultaneous occurrence of the condition ab′ = 1. If the test
vectors can sensitize these nodes such that the condition ab′ = 1 is satisfied
at least 8 times (the maximum number of states of a 3–bit counter), then the
Trojan would be activated. Next, we present a mathematical analysis to justify
the concept.

3.1 Mathematical Analysis

Without loss of generality, assume that a Trojan is triggered by the rare logic
values at two nodes A and B, with corresponding probability of occurrence p1

and p2. Assume T to be the total number of vectors applied to the circuit under
test, such that both A and B have been individually excited to their rare values
at least N times. Then, the expected number of occurrences of the rare logic
values at nodes A and B are given by EA = T ·p1≥N and EB = T ·p2≥N , which
lead to:

T≥N

p1
and T≥N

p2
(1)

Now, let pj be the probability of simultaneous occurrence of the rare logic values
at nodes A and B, an event that acts as the trigger condition for the Trojan.
Then, the expected number of occurrences of this event when T vectors are
applied is:

EAB = pj ·T (2)

In the context of this problem, we can assume pj > 0, because an adversary
is unlikely to insert a Trojan which would never be triggered. Then, to ensure
that the Trojan is triggered at least once when T test vectors are applied, the
following condition must be satisfied:

pj ·T≥1 (3)

From inequality (1), let us assume T = c·Np1
. where c≥1 is a constant depending

on the actual test set applied. Inequality (3) can then be generalized as:

S = c·pj

p1
·N (4)



where S denotes the number of times the trigger condition is satisfied during
the test procedure. From this equation, the following observations can be made
about the interdependence of S and N :

1. For given parameters c, p1 and pj , S is proportional to N , i.e. the expected
number of times the Trojan trigger condition is satisfied increases with the
number of times the trigger nodes have been individually excited to their
rare values. This observation forms the main motivation behind the MERO
test generation approach for Trojan detection.

2. If there are q trigger nodes and if they are assumed to be mutually indepen-
dent, then pj = p1·p2·p3· · ·pq, which leads to:

S = c·N ·
q∏

i=2

pi (5)

As pi < 1 ∀i = 1, 2, · · ·q, hence, with the increase in q, S decreases for a
given c and N . In other words, with the increase in the number of trigger
nodes, it becomes more difficult to satisfy the trigger condition of the inserted
Trojan for a given N . Even if the nodes are not mutually independent, a
similar dependence of S on q is expected.

3. The trigger nodes can be chosen such that pi≤θ ∀i = 1, 2, · · ·q, so that θ
is defined as a trigger threshold probability. Then as θ increases, the cor-
responding selected rare node probabilities are also likely to increase. This
will result in an increase in S for a given T and N i.e. the probability of
Trojan activation would increase if the individual nodes are more likely to
get triggered to their rare values.

All of the above predicted trends were observed in our simulations, as shown
in Section 4.

3.2 Test Generation

Algorithm 1 shows the major steps in the proposed reduced test set generation
process for Trojan detection. We start with the golden circuit netlist (without
any Trojan), a random pattern set (V ), list of rare nodes (L) and number of
times to activate each node to its rare value (N). First, the circuit netlist is read
and mapped to a hypergraph. For each node in L, we initialize the number of
times a node encounters a rare value (AR) to 0. Next, for each random pattern
vi in V , we count the number of nodes (CR) in L whose rare value is satisfied.
We sort the random patterns in decreasing order of CR. In the next step, we
consider each vector in the sorted list and modify it by perturbing one bit at a
time. If a modified test pattern increases the number of nodes satisfying their
rare values, we accept the pattern in the reduced pattern list. In this step we
consider only those rare nodes with AR < N . The process repeats until each node
in L satisfies its rare value at least N times. The output of the test generation
process is a minimal test set that improves the coverage for both combinational
and sequential Trojans compared to random patterns.



Algorithm 1 Procedure MERO
Generate reduced test pattern set for Trojan detection
Inputs: Circuit netlist, list of rare nodes (L) with associated rare values, list of
random patterns (V ), number of times a rare condition should be satisfied (N)
Outputs: Reduced pattern set (RV )

1: Read circuit and generate hypergraph
2: for all nodes in L do
3: set number of times node satisfies rare value (AR) to 0
4: end for
5: set RV = Φ
6: for all random pattern in V do
7: Propagate values
8: Count the # of nodes (CR) in L with their rare value satisfied
9: end for

10: Sort vectors in V in decreasing order of CR

11: for all vector vi in decreasing order of CR do
12: for all bit in vi do
13: Perturb the bit and re-compute # of satisfied rare values (C

′
R)

14: if (C
′
R > CR) then

15: Accept the perturbation and form v
′
i from vi

16: end if
17: end for
18: Update AR for all nodes in L due to vector vi

19: if v
′
i increases AR for at least one rare node then

20: Add the modified vector v
′
i to RV

21: end if
22: if (AR≥N) for all nodes in L then
23: break
24: end if
25: end for

3.3 Coverage Estimation

Once the reduced test vector set has been obtained, computation of Trigger and
Trojan coverage can be performed for a given trigger threshold (θ) (as defined in
Section 3.1) and a given number of trigger nodes (q) using a random sampling
approach. From the Trojan population, we randomly select a number of q–trigger
Trojans, where each trigger node has signal probability less than equal θ. We
assume that Trojans comprising of trigger nodes with higher signal probability
than θ will be detected by conventional test. From the set of sampled Trojans,
Trojans with false trigger conditions which cannot be justified with any input
pattern are eliminated. Then, the circuit is simulated for each vector in the
given vector set and checked whether the trigger condition is satisfied. For an
activated Trojan, if its effect can be observed at the primary output or scan flip-
flop input, the Trojan is considered “covered”, i.e. detected. The percentages



(a) (b)

Fig. 2. Impact of sample size on trigger and Trojan coverage for benchmarks c2670
and c3540, N = 1000 and q = 4: (a) deviation of trigger coverage, and (b) deviation of
Trojan coverage.

of Trojans activated and detected constitute the trigger coverage and Trojan
coverage, respectively.

3.4 Choice of Trojan Sample Size

In any random sampling process an important decision is to select the sample
size in a manner that represents the population reasonably well. In the con-
text of Trojan detection, it means further increase in sampled Trojans, renders
negligible change in the estimated converge. Fig. 2 shows a plot of percentage
deviation of Trigger and Trojan coverage (q = 4) from the asymptotic value for
two benchmark circuits with varying Trojan sample size. From the plots, we ob-
serve that the coverage saturates with nearly 100,000 samples, as the percentage
deviation tends to zero. To compromise between accuracy of estimated coverage
and simulation time, we have selected a sample size of 100,000 in our simulations.

(a) (b)

Fig. 3. Impact of N (number of times a rare point satisfies its rare value) on the
trigger/Trojan coverage and test length for benchmarks (a) c2670 and (b) c3540.



3.5 Choice of N

Fig. 3 shows the trigger and Trojan coverage for two ISCAS–85 benchmark
circuits with increasing values of N , along with the lengths of the corresponding
testset. From these plots it is clear that similar to N–detect tests for stuck-at
fault where defect coverage typically improves with increasing N , the trigger
and Trojan coverage obtained with the MERO approach also improves steadily
with N , but then both saturate around N = 200 and remain nearly constant for
larger values of N . As expected, the test size also increases with increasing N .
We chose a value of N = 1000 for most of our experiments to reach a balance
between coverage and test vector set size.

3.6 Improving Trojan Detection Coverage

As noted in previous sections, Trojan detection using logic testing involves si-
multaneous triggering of the Trojan and the propagation of its effect to output
nodes. Although the proposed test generation algorithm increases the probabil-
ity of Trojan activation, it does not explicitly target increasing the probability
of a malicious effect at payload being observable. MERO test patterns, how-
ever, achieves significant improvement in Trojan coverage compared to random
patterns, as shown in Section 4. This is because the Trojan coverage has strong
correlation with trigger coverage. To increase the Trojan coverage further, one
can use the following low-overhead approaches.

1. Improvement of test quality : We can consider number of nodes observed along
with number of nodes triggered for each vector during test generation. This
means, at step 13-14 of Algorithm 1, a perturbation is accepted if the sum
of triggered and observed nodes improves over previous value. This comes at
extra computational cost to determine the number of observable nodes for
each vector. We note that for a small ISCAS benchmark c432 (an interrupt
controller), we can improve the Trojan coverage by 6.5% with negligible
reduction in trigger coverage using this approach.

2. Observable test point insertion: We note that insertion of very few observable
test points can achieve significant improvement in Trojan coverage at the
cost of small design overhead. Existing algorithm for selecting observable
test points for stuck-at fault test [14] can be used here. Our simulation with
c432 resulted in about 4% improvement in Trojan coverage with 5 judiciously
inserted observable points.

3. Increasing N and/or increasing the controllability of the internal nodes: In-
ternal node controllability can be increased by judiciously inserting few con-
trollable test points or increasing N . It is well-known in the context of stuck-
at ATPG, that scan insertion improves both controllability and observabil-
ity of internal nodes. Hence, the proposed approach can take advantage of
low-overhead design modifications to increase the effectiveness of Trojan de-
tection.



Fig. 4. Integrated framework for rare occurrence determination, test generation using
MERO approach, and Trojan simulation.

4 Results

4.1 Simulation setup

We have implemented the test generation and the Trojan coverage determination
in three separate C programs. All the three programs can read a Verilog netlist
and create a hypergraph from the netlist description. The first program, named
as RO-Finder (Rare Occurence Finder), is capable of functionally simulat-

Table 1. Comparison of Trigger and Trojan coverage among ATPG patterns [7], Ran-
dom (100K, input weights: 0.5), and MERO patterns for q = 2 and q = 4, N = 1000,
θ = 0.2

ATPG patterns Random (100K patterns) MERO Patterns

Nodes q = 2 q = 4 q = 2 q = 4 q = 2 q = 4

Ckt. (Rare/ Trig. Troj. Trig. Troj. Trig. Troj. Trig. Troj. Trig. Troj. Trig. Troj.

Tot.) Cov. Cov. Cov. Cov. Cov. Cov. Cov. Cov. Cov. Cov. Cov. Cov.

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

c2670 297/1010 93.97 58.38 30.7 10.48 98.66 53.81 92.56 30.32 100.00 96.33 99.90 90.17

c3540 580/1184 77.87 52.09 16.07 8.78 99.61 86.5 90.46 69.48 99.81 86.14 87.34 64.88

c5315 817/2485 92.06 63.42 19.82 8.75 99.97 93.58 98.08 79.24 99.99 93.83 99.06 78.83

c6288 199/2448 55.16 50.32 3.28 2.92 100.00 98.95 99.91 97.81 100.00 98.94 92.50 89.88

c7552 1101/3720 82.92 66.59 20.14 11.72 98.25 94.69 91.83 83.45 99.38 96.01 95.01 84.47

s13207‡ 865/2504 82.41 73.84 27.78 27.78 100 95.37 88.89 83.33 100.00 94.68 94.44 88.89

s15850‡ 959/3004 25.06 20.46 3.80 2.53 94.20 88.75 48.10 37.98 95.91 92.41 79.75 68.35

s35932‡ 970/6500 87.06 79.99 35.9 33.97 100.00 93.56 100.00 96.80 100.00 93.56 100.00 96.80

Avg. 724/2857 74.56 58.14 19.69 13.37 98.84 88.15 88.73 72.30 99.39 93.99 93.50 82.78
‡These sequential benchmarks were run with 10,000 random Trojan instances to reduce run time of
Tetramax



ing a netlist for a given set of input patterns, computing the signal probability
at each node and identifying nodes with low signal probability as rare nodes.
The second program MERO implements algorithm-1 described in Section 3.2
to generate the reduced pattern set for Trojan detection. The third program,
TrojanSim (Trojan Simulator), is capable of determining both Trigger and
Trojan coverage for a given test set using random sample of Trojan instances.
A q-trigger random Trojan instance is created by randomly selecting the trigger
nodes from the list of rare nodes. We consider one randomly selected payload
node for each Trojan. Fig. 4 shows the flow-chart for the MERO methodology.
Synopsys TetraMAX was used to justify the trigger condition for each Trojan
and eliminate the false Trojans. All simulations and test generation were car-
ried out on a Hewlett-Packard Linux workstation with a 2GHz dual-core Intel
processor and 2GB RAM.

4.2 Comparison with Random and ATPG Patterns

Table 1 lists the trigger and Trojan coverage results for a set of combinational
(ISCAS-85) and sequential (ISCAS-89) benchmarks using stuck-at ATPG pat-
terns (generated using the algorithm in [7]), weighted random patterns and
MERO test patterns. It also lists the number of total nodes in the circuit and the
number of rare nodes identified by RO-Finder tool based on signal probability.
The signal probabilities were estimated through simulations with a set of 100,000
random vectors. For the sequential circuits, we assume full-scan implementation.
We consider 100,000 random instances of Trojans following the sampling policy
described in Section 3.4, with one randomly selected payload node for each Tro-
jan. Coverage results are provided in each case for two different trigger point
count, q = 2 and q = 4, at N = 1000 and θ = 0.2.

Table 2 compares reduction in the length of the testset generated by the
MERO test generation method with 100,000 random patterns, along with the
corresponding run-times for the test generation algorithm. This run-time in-
cludes the execution time for Tetramax to validate 100,000 random Trojan in-

Table 2. Reduction in test length with MERO approach com-
pared to 100K random patterns along with runtime, q = 2,
N=1000, θ=0.2

Ckt. MERO test length % Reduction Run-time (s)

c2670 8254 91.75 30051.53

c3540 14947 85.05 9403.11

c5315 10276 89.72 80241.52

c6288 5014 94.99 15716.42

c7552 12603 87.40 160783.37

s13207† 26926 73.07 23432.04

s15850† 32775 67.23 39689.63

s35932† 5480 94.52 29810.49

Avg. 14534 85.47 48641.01

†These sequential benchmarks were run with 10,000 ran-
dom Trojan instances to reduce run time of Tetramax



stances, as well as time to determine the coverage by logic simulation. We can
make the following important observations from these two tables:

1. The stuck-at ATPG patterns provide poor trigger and Trojan coverage com-
pared to MERO patterns. The increase in coverage between the ATPG and
MERO patterns is more significant in case of higher number of trigger points.

2. From Table 2, it is evident that the reduced pattern with N=1000 and θ =
0.2 provides comparable trigger coverage with significant reduction in test
length. The average improvement in test length for the circuits considered
is about 85%.

3. Trojan coverage is consistently smaller compared to trigger coverage. This
is because in order to detect a Trojan by applying an input pattern, besides
satisfying the trigger condition, one needs to propagate the logic error at
the payload node to one or more primary outputs. In many cases although
the trigger condition is satisfied, the malicious effect does not propagate to
outputs. Hence, the Trojan remains triggered but undetected.

4.3 Effect of Number of Trigger Points (q)

The impact of q on coverage is evident from the Fig. 5, which shows the decreas-
ing trigger and Trojan coverage with the increasing number of trigger points for
two combinational benchmark circuits. This trend is expected from the analysis
of Section 3.1. Our use of TetraMAX for justification and elimination of the false
triggers helped to improve the Trojan coverage.

4.4 Effect of Trigger Threshold (θ)

Fig. 6 plots the trigger and Trojan coverage with increasing θ for two ISCAS-85
benchmarks, at N = 1000 and q = 4. As we can observe, the coverage values
improve steadily with increasing θ while saturating at a value above 0.20 in
both the cases. The improvement in coverage with θ is again consistent with the
conclusions from the analysis of Section 3.1.

(a) (b)

Fig. 5. Trigger and Trojan coverage with varying number of trigger points (q) for
benchmarks (a) c3540 and (b) c7552, at N = 1000, θ = 0.2.



(a) (b)

Fig. 6. Trigger and Trojan coverage with trigger threshold (θ) for benchmarks (a) c3540
and (b) c7552, for N = 1000, q = 4.

4.5 Sequential Trojan Detection

To investigate the effectiveness of the MERO test generation methodology in de-
tecting sequential Trojans, we designed and inserted sequential Trojans modeled
following Fig. 1(d), with 0, 2, 4, 8, 16 and 32 states, respectively (the case with
zero states refers to a combinational Trojan following the model of Fig. 1(c)). A
cycle-accurate simulation was performed by our simulator TrojanSim, and the
Trojan was considered detectable only when the output of the golden circuit
and the infected circuit did not match. Table 3 presents the trigger and Trojan
coverage respectively obtained by 100,000 randomly generated test vectors and
the MERO approach for three large ISCAS-89 benchmark circuits. The superi-
ority of the MERO approach over the random test vector generation approach
in detecting sequential Trojans is evident from this table.

Although these results have been presented for a specific type of sequential
Trojans (counters which increase their count conditionally), they are represen-

Table 3. Comparison of sequential Trojan coverage between random (100K) and
MERO patterns, N = 1000, θ = 0.2, q = 2

Trigger Cov. for 100K Random Vectors Trigger Cov. for MERO Vectors
(%) (%)

Ckt. Trojan State Count Trojan State Count
0 2 4 8 16 32 0 2 4 8 16 32

s13207 100.00 100.00 99.77 99.31 99.07 98.38 100.00 100.00 99.54 99.54 98.84 97.92
s15850 94.20 91.99 86.79 76.64 61.13 48.59 95.91 95.31 94.03 91.90 87.72 79.80
s35932 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Avg. 98.07 97.33 95.52 91.98 86.73 82.32 98.64 98.44 97.86 97.15 95.52 92.57

Trojan Cov. for 100K Random Vectors Trojan Cov. for MERO Vectors
(%) (%)

Ckt. Trojan State Count Trojan State Count
0 2 4 8 16 32 0 2 4 8 16 32

s13207 95.37 95.37 95.14 94.91 94.68 93.98 94.68 94.68 94.21 94.21 93.52 92.82
s15850 88.75 86.53 81.67 72.89 58.4 46.97 92.41 91.99 90.62 88.75 84.23 76.73
s35932 93.56 93.56 93.56 93.56 93.56 93.56 93.56 93.56 93.56 93.56 93.56 93.56
Avg. 92.56 91.82 90.12 87.12 82.21 78.17 93.55 93.41 92.80 92.17 90.44 87.70



Fig. 7. FSM model with no loop in state transition graph.

tative of other sequential Trojans whose state transition graph (STG) has no
“loop”. The STG for such a FSM has been shown in Fig. 7. This is a 8-state
FSM which changes its state only when a particular internal node condition Ci

is satisfied at state Si, and the Trojan is triggered when the FSM reaches state
S8. The example Trojan shown in Fig. 1(d) is a special case of this model, where
the conditions C1 through C8 are identical. If each of the conditions Ci is as
rare as the condition a = 1, b = 0 required by the Trojan shown in Fig. 1(d),
then there is no difference between these two Trojans as far as their rareness of
getting triggered is concerned. Hence, we can expect similar coverage and test
length results for other sequential Trojans of this type. However, the coverage
may change if the FSM structure is changed (as shown with dotted line). In this
case, the coverage can be controlled by changing N .

4.6 Application to Side-channel Analysis

As observed from the results presented in this section, the MERO approach can
achieve high trigger coverage for both combinational and sequential Trojans.
This essentially means that the MERO patterns will induce activity in the Tro-
jan triggering circuitry with high probability. A minimal set of patterns that
is highly likely to cause activity in a Trojan is attractive in power or current
signature based side-channel approach to detect hardware Trojan [1, 9, 11]. The
detection sensitivity in these approaches depends on the induced activity in the
Trojan circuit by applied test vector. It is particularly important to enhance sen-
sitivity for the Trojans where the leakage contribution to power by the Trojan
circuit can be easily masked by process or measurement noise. Hence, MERO ap-
proach can be extended to generate test vectors for side-channel analysis, which
requires amplifying the Trojan impact on side-channel parameter such as power
or current.

5 Conclusions

Conventional logic test generation techniques cannot be readily extended to
detect hardware Trojans because of the inordinately large number of possible
Trojan instances. We have presented a statistical Trojan detection approach
using logic testing where the concept of multiple excitation of rare logic values at



internal nodes is used to generate test patterns. Simulation results show that the
proposed test generation approach achieves about 85% reduction in test length
over random patterns for comparable or better Trojan detection coverage. The
proposed detection approach can be extremely effective for small combinational
and sequential Trojans with small number of trigger points, for which side-
channel analysis approaches cannot work reliably. Hence, the proposed detection
approach can be used as complementary to side-channel analysis based detection
schemes. Future work will involve improving the test quality which will help in
minimizing the test length and increasing Trojan coverage further.

References

1. Agrawal, D., Baktir, S., Karakoyunlu, D., Rohatgi, P. and Sunar, B.: Trojan
detection using IC fingerprinting. IEEE Symp. on Security and Privacy. (2007)
296-310

2. Ravi, S., Raghunathan, A. and Chakradhar, S.: Tamper resistance mechanisms for
secure embedded systems. Intl. Conf. on VLSI Design. (2006) 605-611

3. DARPA BAA06-40: TRUST for Integrated Circuits. [Online].
Available: http://www.darpa.mil/BAA/BAA06-40mod1/html

4. Kumagai, J.: Chip Detectives. IEEE Spectrum. 37 (2000) 43-49
5. Amyeen, M.E., Venkataraman, S., Ojha, A. and Lee, S.: Evaluation of the Quality

of N-Detect Scan ATPG Patterns on a Processor. Intl. Test Conf. (2004) 669-678
6. Pomeranz, I. and Reddy, S.M.: A Measure of Quality for n-Detection Test Sets.

IEEE. Trans. on Computers. 53 (2004) 1497-1503
7. Mathew, B. and Saab, D.G.: Combining multiple DFT schemes with test generation.

IEEE Trans. on CAD. 18 (1999) 685-696
8. Adee, S.: The Hunt for the Kill Switch. IEEE Spectrum.45 (2008) 34-39.
9. Banga, M. and Hsiao, M.S.: A Region Based Approach for the Identification of

Hardware Trojans. Intl. Workshop on Hardware-oriented Security and Trust. (2008)
40-47

10. Jin, Y. and Makris, Y.: Hardware Trojan Detection Using Path Delay Fingerprint,
Intl. Workshop on Hardware-oriented Security and Trust. (2008) 51-57

11. Rad, R.M., Wang. X., Tehranipoor, M. and Plusqellic, J.: Power Supply Signal
Calibration Techniques for Improving Detection Resolution to Hardware Trojans.
Intl. Conf. on CAD. (2008) 632-639

12. Chakraborty, R.S., Paul, S. and Bhunia, S.: On-Demand Transparency for Improv-
ing Hardware Trojan Detectability. Intl. Workshop on Hardware-oriented Security
and Trust. (2008) 48-50

13. Wolff, F., Papachristou, C., Bhunia, S. and Chakraborty, R.S.: Towards Trojan-
Free Trusted ICs: Problem Analysis and Detection Scheme. Design, Automation
and Test in Europe. (2008) 1362-1365

14. Geuzebroek, M.J., Van der Linden, J.T. and Van de Goor, A.J.: Test Point
Insertion that Facilitates ATPG in Reducing Test Time and Data Volume. Intl.
Test Conf. (2002) 138-147


